Is it just me . . . or is it really hot in here?
Imagine you find yourself locked in a small metal closet with little or no ventilation . . . it wouldn’t take long before you were perspiring profusely and gasping for breath. Well, now imagine that you’re a 19-inch rack stacked with computers and other electronics in that same closet. It wouldn’t take long before excessive heat forced you to shut down completely.
An electronics enclosure is designed to protect electronic components and devices by providing a physical barrier to aggressive media like humidity, water, oil-contaminated air, corrosive vapors, and airborne dust. As threatening as these factors are, the number one enemy of today's high-performance electronic and microelectronic components housed in enclosures is actually excessive heat. As the packing density inside enclosures has increased, so have the importance of heat dissipation and energy efficiency in modern climate control enclosure systems. If exposed to a 10K increase in temperature relative to the maximum permitted operating temperature, an electronic component’s service life can be cut in half and its failure rate doubles. (See the Arrhenius equation below)